## organic papers

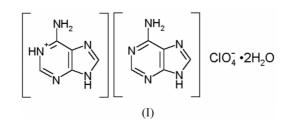
Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Vladimír Zeleňák,<sup>a</sup>\* Zuzana Vargová<sup>a</sup> and Ivana Císařová<sup>b</sup>

 <sup>a</sup>Institute of Chemical Science, Faculty of Science, P. J. Šafárik University, Moyzesova 11, SK 041 54 Košice, Slovak Republic, and
 <sup>b</sup>Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague, Czech Republic

Correspondence e-mail: zelenak@kosice.upjs.sk


#### Key indicators

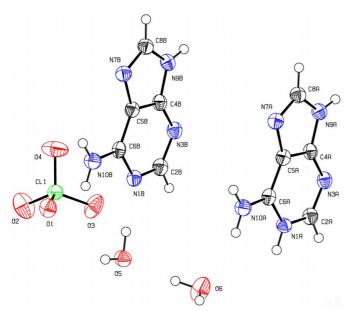
Single-crystal X-ray study T = 150 KMean  $\sigma$ (C–C) = 0.002 Å R factor = 0.042 wR factor = 0.138 Data-to-parameter ratio = 13.4

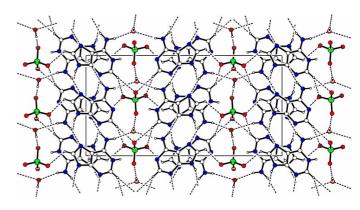
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The structure of the title compound,  $C_5H_6N_5^+$ ·ClO<sub>4</sub><sup>-</sup>·-C<sub>5</sub>H<sub>5</sub>N<sub>5</sub>·2H<sub>2</sub>O, contains both an adeninium cation (AdeH<sup>+</sup>) and an adenine molecule (Ade). As a result of the protonation, the C-N-C angle at the protonated N atom is larger by 4° than the corresponding angle in the neutral adenine molecule. The crystal packing is governed by classical hydrogen bonds, connecting the Ade and AdeH<sup>+</sup> moieties in the crystallographic [101] direction. In addition, AdeH<sup>+</sup> and Ade form hydrogen bonds with the water molecules. These hydrogen bonds increase the dimensionality of the system to three-dimensional space. The water molecules are connected to each other by hydrogen bonds in the [001] direction.

#### Comment

The adeninium cation (1+ or 2+) is known to form a variety of inorganic salts, *e.g.* chloride (Kistenmacher & Shigematsu, 1974), bromide (Langer & Huml, 1978*a*), bistriiodide (Cheng *et al.*, 2002), sulfate (Langer & Huml, 1978*b*), nitrate (Hingerty *et al.*, 1981) or phosphate (Langer *et al.*, 1979). Recently, the structure of the adeninium salt with perchlorate as counteranion,  $(\text{AdeH}_2)(\text{ClO}_4)_2$ ·H<sub>2</sub>O, has been described (Bendjeddou *et al.*, 2003). We report here the structure of another compound in this family, adeninium perchlorate adenine dihydrate, (I).




The crystal structure of (I) contains both adeninium cations  $(AdeH^+)$  and neutral adenine molecules (Ade). The positive charge of the AdeH<sup>+</sup> ion is balanced by the perchlorate anion. The asymmetric unit is completed by two water molecules (Fig. 1). A similar architecture comprising an adenine cation and a neutral adenine molecule was reported with tetra-fluoroborate as the counterion (Young *et al.*, 1991).


The molecular dimensions in Ade and AdeH<sup>+</sup> (Table 1) are comparable with those observed in the free base (Voet & Rich, 1970) and with those in, for example, adenine hydrochloride (Kistenmacher & Shigematsu, 1974). In agreement with the relative basicity of the N atoms in adenine (N9 > N1 > N7 > N3 > N10<sub>exocyclic</sub>; Lippert, 2000), atoms N9 are protonated in both Ade and AdeH<sup>+</sup>. In addition, the protonation of atom N1 takes place in the AdeH<sup>+</sup> cation. As a result of this

 $\odot$  2004 International Union of Crystallography Printed in Great Britain – all rights reserved

# Adeninium perchlorate adenine dihydrate

Received 24 March 2004 Accepted 30 March 2004 Online 9 April 2004







A view of the packing in (I), showing the  $O-H\cdots O$  and  $C-H\cdots O$  contacts formed by the perchlorate anions. The water O5 molecules have been omitted for clarity.

Figure 1

The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.





A view, along the a axis, of the crystal packing in (I). Hydrogen bonds are shown as dashed lines. The perchlorate anions have been omitted for clarity.

protonation, the C2A-N1A-C6A angle is larger by 4° than the C2B-N1B-C6B angle in the neutral adenine molecule. The Cl-O bond distances and O-Cl-O angles show nearly ideal tetrahedral geometry, and they are comparable with the values reported with perchlorate as the counterion for diprotonated adenine,  $(AdeH_2)(ClO_4)_2$ ·H<sub>2</sub>O (Bendjeddou *et al.*, 2003).

The crystal packing in (I) is mostly governed by classical hydrogen bonds (Table 2). Atoms N3, N7, N9 and exocyclic N10 of AdeH<sup>+</sup> and Ade participate in the formation of hydrogen bonds which connect these residues in the [101] direction. In addition, the exocyclic atom N10, the protonated atom N1A (in AdeH<sup>+</sup>) and atom N1B (in Ade) form hydrogen bonds with the water molecules. These hydrogen bonds

increase the dimensionality of the system to three-dimensional space (Fig. 2). The water molecules are connected to each other by hydrogen bonds in the [001] direction. The perchlorate anions are connected *via*  $O-H\cdots O$  hydrogen bonds to the water O6 molecules, and *via* weak  $C-H\cdots O$  interactions to the Ade and AdeH<sup>+</sup> molecules (Fig. 3).

#### **Experimental**

The title compound was isolated from a reaction mixture containing adenine,  $Zn(ClO_4)_2$ , NaOH and 1,4,7-triazacyclononane (tacn) in the ratio 0.265:0.265:0.800:0.265 mmol. The pH of the solution was adjusted to 5.0 using dilute HClO<sub>4</sub>. Crystals of (I) grew from the reaction mixture after four weeks.

#### Crystal data

| $D_x = 1.680 \text{ Mg m}^{-3}$           |
|-------------------------------------------|
| Mo $K\alpha$ radiation                    |
| Cell parameters from 27 858               |
| reflections                               |
| $\theta = 1-27.5^{\circ}$                 |
| $\mu = 0.30 \text{ mm}^{-1}$              |
| T = 150 (2)  K                            |
| Needle, colourless                        |
| $0.35 \times 0.30 \times 0.15 \text{ mm}$ |
|                                           |
| 2341 reflections with $I > 2\sigma(I)$    |
| $R_{\rm int} = 0.026$                     |
| $\theta_{\rm max} = 27.5^{\circ}$         |
|                                           |

### Refinement

Refinement on  $F^2$   $R[F^2 > 2\sigma(F^2)] = 0.042$   $wR(F^2) = 0.138$  S = 1.053656 reflections 272 parameters H atoms treated by a mixture of independent and constrained

refinement

 $h = -10 \rightarrow 10$  $k = -26 \rightarrow 26$ 

 $l = -13 \rightarrow 13$ 

+ 0.3603P]

 $\begin{array}{l} (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.28 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$ 

 $\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$ 

 $w = 1/[\sigma^2(F_o^2) + (0.0721P)^2]$ 

where  $P = (F_0^2 + 2F_c^2)/3$ 

### Table 1

Selected geometric parameters (Å, °).

| N1A - C2A       | 1.357 (2)   | C6B-N10B    | 1.333 (2)   |
|-----------------|-------------|-------------|-------------|
| N1A - C6A       | 1.362 (2)   | Cl1-O4      | 1.4287 (15) |
| C6A-N10A        | 1.316 (2)   | Cl1-O2      | 1.4311 (15) |
| N1B-C2B         | 1.348 (2)   | Cl1-O1      | 1.4325 (15) |
| N1B-C6B         | 1.355 (2)   | Cl1-O3      | 1.4362 (16) |
|                 |             |             |             |
| C2A-N1A-C6A     | 123.71 (16) | N1B-C6B-C5B | 117.27 (16) |
| N3A - C2A - N1A | 125.33 (17) | O4-Cl1-O2   | 108.54 (12) |
| N10A-C6A-N1A    | 120.27 (17) | O4-Cl1-O1   | 109.60 (8)  |
| N1A-C6A-C5A     | 113.95 (15) | O2-Cl1-O1   | 109.30 (8)  |
| C2B-N1B-C6B     | 119.72 (16) | O4-Cl1-O3   | 109.63 (9)  |
| N3B - C2B - N1B | 127.93 (17) | O2-Cl1-O3   | 109.61 (9)  |
| N10B-C6B-N1B    | 119.08 (17) | O1-Cl1-O3   | 110.15 (10) |
| N3B-C2B-N1B     | 127.93 (17) | O2-Cl1-O3   | 109.61 (9)  |

 Table 2

 Hydrogen-bonding geometry (Å,  $^{\circ}$ ).

| $D - H \cdots A$                          | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-------------------------------------------|----------|-------------------------|--------------|---------------------------|
| $N1A - H1A \cdots O5^{i}$                 | 0.86     | 1.87                    | 2.715 (2)    | 169                       |
| $N9A - H9A \cdots N3B^{ii}$               | 0.86     | 2.01                    | 2.847 (2)    | 163                       |
| $N10A - H10A \cdots O6$                   | 0.89(2)  | 2.18 (2)                | 3.049 (2)    | 165 (2)                   |
| $N10A - H10B \cdot \cdot \cdot N7B^{iii}$ | 0.88 (2) | 2.06 (2)                | 2.885 (2)    | 156 (2)                   |
| $N9B - H9B \cdot \cdot \cdot N3A^{ii}$    | 0.86     | 2.09                    | 2.918 (2)    | 161                       |
| $N10B - H10C \cdot \cdot \cdot O6^{iv}$   | 0.87(2)  | 2.48 (2)                | 3.322 (2)    | 164 (2)                   |
| $N10B - H10D \cdot \cdot \cdot N7A^{iii}$ | 0.85(2)  | 2.15 (2)                | 2.969 (2)    | 160 (2)                   |
| $O5-H1W \cdots O6^{iv}$                   | 0.88(2)  | 2.08(2)                 | 2.897 (2)    | 156 (2)                   |
| $O5-H2W \cdot \cdot \cdot N1B$            | 0.91(2)  | 1.79 (2)                | 2.700 (2)    | 177 (2)                   |
| $O6-H3W \cdot \cdot \cdot O3^{v}$         | 0.84(2)  | 2.21 (2)                | 2.999 (2)    | 157 (3)                   |
| $O6-H4W \cdots O5$                        | 0.88(2)  | 1.88 (2)                | 2.763 (3)    | 174 (2)                   |
| $C2A - H2A \cdots O1^{vi}$                | 0.93     | 2.49                    | 3.405 (2)    | 167                       |
| $C2A - H2A \cdots O4^{vi}$                | 0.93     | 2.47                    | 3.205 (2)    | 136                       |
| $C2B - H2B \cdots O1^{i}$                 | 0.93     | 2.50                    | 3.412 (2)    | 166                       |
| $C2B - H2B \cdot \cdot \cdot O2^{i}$      | 0.93     | 2.59                    | 3.349 (2)    | 139                       |
| $C8A - H8A \cdots O2^{vii}$               | 0.93     | 2.39                    | 3.045 (2)    | 127                       |
| $C8B - H8B \cdot \cdot \cdot O4^{viii}$   | 0.93     | 2.43                    | 3.032 (2)    | 122                       |

Symmetry codes: (i)  $x, \frac{1}{2} - y, z - \frac{1}{2}$ ; (ii) -x, 1 - y, 1 - z; (iii) 1 - x, 1 - y, 2 - z; (iv)  $x, \frac{1}{2} - y, \frac{1}{2} + z$ ; (v) 1 + x, y, z; (vi) x, y, z - 1; (vii)  $-x, \frac{1}{2} + y, \frac{3}{2} - z$ ; (viii) -x, 1 - y, 2 - z.

All H atoms were located in difference Fourier maps. During the refinement, the H atoms of Ade and AdeH<sup>+</sup> were treated as riding on the parent C and N atoms, with C-H = 0.93 and N-H = 0.86 Å, and with  $U_{iso}(H) = 1.2U_{eq}(C,N)$ . The positions of the amine H atoms were refined freely along with their isotropic displacement parameters. The water H atoms were refined with the restraint O-H = 0.88 (2) Å. Analysis of the crystal structure by *PLATON* (Spek, 2003) showed pseudo-symmetry (*P*2<sub>1</sub>/*m*). The test did not take into account the

reflection file, where a number of well observed reflections with l = 2n + 1 and  $F^2 > 3\sigma(F^2)$ , and even with  $F^2 > 40\sigma(F^2)$ , are present, forbidding the possibility of halving the *c* parameter. As the positions of the heavy atoms follow closely the pseudo-translational symmetry  $(0,0,\frac{1}{2})$ , this symmetry was also imposed on the positions of the H atoms in the first stages of the solution. Therefore, two models of protonation were tested. In the first model, the protonating H atom was disordered and attached to both atoms N1*A* and N1*B* with an occupancy of 0.5, leading to  $wR_2 = 0.140$  and S = 1.06. In the second model, described in this paper, the protonating H atom was attached only to atom N1*A*, resulting in  $wR_2 = 0.138$  and S = 1.05. The latter model is also in agreement with the molecular geometry, where the protonated adenine molecule has a larger C2–N1–C6 angle than the neutral one.

Data collection: *COLLECT* (Nonius, 1998) and *DENZO* (Otwinowski & Minor, 1997); cell refinement: *COLLECT* and *DENZO*; data reduction: *COLLECT* and *DENZO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*, *enCIFer* (Allen *et al.*, 2004) and *WinGX* (Farrugia, 1999).

#### References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Bendjeddou, L., Cherouana, A., Dahaoui, S., Benali-Cherif, N. & Lecomte, C. (2003). Acta Cryst. E59, 0649–0651.
- Cheng, Y. J., Wang, Z. M., Liao, C. S. & Yan, C. (2002). New J. Chem. 26, 1360–1364.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hingerty, B. E., Einstein, J. R. & Wei, C. H. (1981). Acta Cryst. B37, 140-147.
- Kistenmacher, T. J. & Shigematsu, T. (1974). Acta Cryst. B30, 166-168.
- Langer, V. & Huml, K. (1978a). Acta Cryst. B34, 1881-1884.
- Langer, V. & Huml, K. (1978b). Acta Cryst. B34, 1157-1163.
- Langer, V., Huml, K. & Zachová, J. (1979). Acta Cryst. B35, 1148-1152.
- Lippert, B. (2000). Coord. Chem. Rev. 200-202, 487-516.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Voet, D. & Rich, A. (1970). Prog. Nucleic Acid Res. Mol. Biol. 10, 183-265.
- Young, A. C. M., Dewan, J. C. & Edwards, A. J. (1991). Acta Cryst. C47, 580– 584.